Properties of Materials for Joint Replacement

Constant A Busch FRCS
Rowley Bristow Unit
Chertsey
Properties of Materials for Joint Replacement

1. Material Science
 Stress-strain curves, corrosion, tribology, wear characteristics

2. Materials
 Metals
 Fe, Co-Cr, Ti, Tantalum
 Ceramics
 Alumina, Zirconia, Bioglass
 Hydroxyapatite
 Diamond
 Polyethylene
 Polymethylmethacrylate

3. Surface Finishes

4. Problems
Properties of Materials for Joint Replacement

Biomaterial = A synthetic or treated natural material which is used to replace or augment tissue and/or organ function.
Properties of Materials for Joint Replacement

Biomaterial considerations:

• Physical properties

Chemical composition

Biostability
Bio-integration
Bio-inert
Bio-compatible

Structure
Properties of Materials for Joint Replacement

Biomaterial considerations:

- Effect of processing on structure.
- Cold working
- Casting
- Forging
Properties of Materials for Joint Replacement

• Bench Testing
• Finite Element Analysis
• Clinical Trials
Properties of Materials for Joint Replacement

\[\text{Stress} = \text{Force/Area} = \text{N/m}^2 = 1 \text{ Pa} \]
Properties of Materials for Joint Replacement
Properties of Materials for Joint Replacement

Strain \(= \frac{(DL - OL)}{OL} \)

Dimensionless = Microstrain = 10\(^{-6}\) change from OL
Properties of Materials for Joint Replacement

- Proportional Limit (yield pt)
- Ultimate Strength
- Elastic Zone
- Breaking Point
- Stress vs. Strain
 - Elastic Deformation
 - Plastic Strain Deformation
Properties of Materials for Joint Replacement

Relative Values of Young's Modulus (Not to scale)

1. Al_2O_3 (ceramic)
2. Co-Cr-Mo (Alloy)
3. Stainless steel
4. Titanium
5. Cortical bone
6. Matrix polymers (PS, PEEK)
7. PMMA
8. Cancellous bone
9. Polyethylene
10. Tendon/ligament
11. Cartilage
Properties of Materials for Joint Replacement

Stress vs. Strain Diagram:
- **Proportional Limit (yield pt)**
- **Elastic Zone**
- **Ultimate Strength**
- **Breaking Point**

Graphs indicating resilience and strain.
Properties of Materials for Joint Replacement

- Stress, σ (Pa)
- Endurance Limit
- No. of Cycles (n)
Properties of Materials for Joint Replacement

- Graph 1: Stiff, Ductile, Strong, Tough
- Graph 2: Stiff, Brittle, Strong
- Graph 3: Stiff, Ductile, Weak
- Graph 4: Stiff, Brittle, Weak
- Graph 5: Flexible, Ductile, Strong, Resilient
- Graph 6: Flexible, Brittle, Strong, Resilient
- Graph 7: Flexible, Ductile, Weak
- Graph 8: Flexible, Brittle, Weak
Early experiments in transportation
Properties of Materials for Joint Replacement

Corrosion ($> 10^{-6}$ M)

1. Uniform
2. Galvanic
3. Crevice
Properties of Materials for Joint Replacement

Corrosion

4. Inter-granular
5. Stress
6. Pitting
Properties of Materials for Joint Replacement

Corrosion

7. Fretting
Properties of Materials for Joint Replacement

- ASTM F-55 - 56
 - 50 alloys
 - Stress, Crevice, Intergranular corrosion
 - Fatigue fractures (F 138)
 - Yield strength 260-896 MPa
 - Elastic modulus 200 GPa (12x Bone)
 - Nitric acid immersion
 - Fracture fixation
Properties of Materials for Joint Replacement

ASTM F-75

- Hot iso-static pressing
- Yield strength 900 MPa
- Elastic modulus 200 GPa
- Cr for corrosion resistance
- Resistant to crevice corrosion
- Good for high stress applications
Properties of Materials for Joint Replacement

ASTM F-67
- No evidence of pitting, intergranular or crevice corrosion
- Supreme biocompatibility
- Yield strength 345-485 MPa
- Easy to sinter for porous layer or use as fiber-metal pads

ASTM F-136
- Ti6AL4V
- Limited O₂ concentration
- Elastic modulus 100 GPa
- Not an articulating surface
Properties of Materials for Joint Replacement

Tantalum

- Like Ti, very corrosion resistant
- Dodecahedral units
- Good biocompatibility
- One shape not composite
- No artifact on MRI
- Acetabular component Hydrocel

ASTM F560-92
Properties of Materials for Joint Replacement

Surface finish

• Uncemented
 Press fit and secondary ingrowth

• Cemented
 Shape closed design
 Force closed design
Properties of Materials for Joint Replacement

<table>
<thead>
<tr>
<th>Surface Appearance</th>
<th>Typical Manufacturing Methods</th>
<th>Approximate Roughness Range R_a (μ inch/μm)</th>
<th>Approximate Roughness Range R_z (μ inch/μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shiny</td>
<td>Polishing</td>
<td>0–5/0–0.1</td>
<td>0–75/0–2.0</td>
</tr>
<tr>
<td>Smooth</td>
<td>Machining, grinding, mass finishing</td>
<td>5–15/0.1–0.4</td>
<td>75–150/2.0–4.0</td>
</tr>
<tr>
<td>Satin</td>
<td>Bead blasting, machining</td>
<td>15–40/0.4–1.0</td>
<td>150–250/4.0–6.0</td>
</tr>
<tr>
<td>Matte</td>
<td>Grit blasting, combination grit + bead blasting</td>
<td>40–100/1.0–2.5</td>
<td>250–750/6.0–20</td>
</tr>
<tr>
<td>Rough</td>
<td>Aggressive grit blasting, plasma spraying, sintering</td>
<td>100–500/2.5–12.5</td>
<td>750–2500/20–60</td>
</tr>
<tr>
<td>Textured</td>
<td>Machining, casting, forging</td>
<td>500+/12.5+</td>
<td>2500+/60+</td>
</tr>
</tbody>
</table>
Properties of Materials for Joint Replacement
Properties of Materials for Joint Replacement
Properties of Materials for Joint Replacement

Crowninshield et al CORR 335, pp 90-102, 1998
Properties of Materials for Joint Replacement

Clinical importance of surface finish?

William H Harris CORR 335, pp 137 -143 , 1998

• Some successes but also some spectacular failures.

• To find causal relationship is difficult:

 Cementing technique Cement used
 Patient Weight Size of implant
 Torsional moment Torsional resistance
 Neck length and offset of implant
Surgeons report uncemented THA success using hydroxyapatite coating

Investigators call 10-year postop results encouraging

BEAUNE, France—As hydroxyapatite (HA) enters its second decade of use as a bioactive coating for hip prostheses, orthopaedic surgeons report good 10-year results using HA-coated femoral and acetabular components.

At the same time, more patients under age 50 are undergoing THA with HA-coated implants because the stems permit a high degree of functional ability. "Hip replacement in younger patients is the most challenging," said Jean-Alain Epinette, MD, of the Clinique Medico-Chirurgicale of Bruay Labussière, France.

Epinette reported what he called "very encouraging" clinical results at five to 10 years in the younger patient population at the 3rd Domestic Congress of the European Hip Society held here. Based on these results, and others, industry experts predict that this success will continue well into the next decade.

See story on page 8

At six weeks postop, direct bone to implant contact was seen with this HA-coated ABG cup retrieved from a patient due to infection.
Properties of Materials for Joint Replacement

(Ca₅PO₄)₃(OH)
Cappello et al., CORR (355): pp 200-211, 1998

Hydroxyapatite (HA)

1. Does HA enhance bone ongrowth?
2. Will HA lead to increased polyethylene wear or an increased incidence of osteolysis?
3. Will HA disappear and if so what will be left to maintain fixation?
Properties of Materials for Joint Replacement

Does HA enhance bone ongrowth?

1. Retrieval studies, post revision
2. X-Ray
3. Animal studies
4. RSA Studies
5. Bone densiometry
Properties of Materials for Joint Replacement

Will HA lead to increased polyethylene wear or an increased incidence of osteolysis?

Cappelo et al, CORR (355): pp 200-211, 1998

Not after 8 years

Prevents polyethylene migration (Geesink and Hoefnagel)

Third body wear (Bauer et al)
Properties of Materials for Joint Replacement

Will HA disappear and if so what will be left to maintain fixation?

- Number of reports show that HA disappears from the stem to a varying degree.
- Osteoclastic resorption, delamination, dissolution, and abrasion.
- Femoral component, clinically appears not relevant.
- Threaded cups also maintain fixation but smooth cups show increased failure rates.
To the horror of the lifeboat’s other members, Madonna loses her balance and falls on her face.
Properties of Materials for Joint Replacement
Properties of Materials for Joint Replacement
Properties of Materials for Joint Replacement

- 4669 implants
- 21% revised at 5 yrs

HAZARD MDA HN 9801 February 1998

3M Capital™ Hip System
(also known as the Modular/Monoblock Cemented Hip System MCHS)

MANUFACTURER/SUPPLIER
3M Health Care Ltd

PROBLEM
Reports of poor short term performance of the femoral component of the 3M Capital™ Hip System.

IMMEDIATE ACTION
Properties of Materials for Joint Replacement

Exeter Matte
Osteoarthritis/Aseptic loosening

Exeter Polished
Osteoarthritis/Aseptic loosening

Percent not revised

Years postoperatively

12y = 83.1% (80.0-86.4), n = 2,734

Charnley 1984-1994
10y = 92.6% (91.9-93.4), n = 23,517
Exeter Polished
8y = 96.5% (95.2-97.8), n = 7,587
Properties of Materials for Joint Replacement
Properties of Materials for Joint Replacement

Migration of the Duraloc cup at two years

B. Stöckl, M. Sandow, M. Krismer, R. Biedermann, C. Wimmer, B. Frischhut

From the University of Innsbruck, Austria

We carried out 71 primary total hip arthroplasties using porous-coated, hemispherical press-fit Duraloc ‘100 Series’ cups in 68 consecutive patients; 61 were combined with the cementless Spotorno stem and ten with the cemented Lubinus SP II stem. Under-reaming of 2 mm achieved a press-fit. Of the 71 hips, 69 (97.1%) were followed up after a mean of 2.4 years. Migration analysis was performed by the Ein Bild Röntgen Analyse method, with an accuracy of 1 mm.

The mean total migration after 24 months was 1.13 mm. Using the definition of loosening as a total migration of 1 mm, it follows that 30 out of 63 cups (48%) were loose at 24 months.

Received 16 April 1998; Accepted after revision 9 July 1998
Properties of Materials for Joint Replacement

The Journal of Bone and Joint Surgery

EDITORIAL

MALIGNANCY AND JOINT REPLACEMENT: THE TIP OF AN ICEBERG?

In 1984 we received a report of a patient in whom a malignant tumour had developed in bone adjacent to a total hip replacement. We reflected on the wisdom of publishing a paper which might cause unwarranted alarm but eventually decided to do so (Penman and Ring disorder which led to replacement, the particular type of prosthesis used and whether or not it was cemented, the interval before malignancy appeared, the histological diagnosis and the subsequent fate of the patient.

Our aim is to discover if the association between
Properties of Materials for Joint Replacement

Thank you