Proximal Tibial Metaphyseal and Diaphyseal Fractures

J Higgins and C Langley

9th April 2010
What we aim to cover

• Adult
• Non operative
• Operative
 – IM nails
 – Plates
 – External fixators
• Conclusions
Proximal Tibial Fractures

- Fracture pattern and associated soft tissue injuries
- Aim of fixation is restoration of length, alignment and rotation
- and protection of the soft tissues
- Treatment problems are closely related to the anatomy of the tibia and the soft tissue
Non operative

• Relies on good reduction and plaster technique
• Frequent review
• Dependant on “fracture personality”
• Malunion, nonunion, knee stiffness
• Difficult to control of proximal fragment

• I have attempted to show ...that this mechanical approach (internal fixation) to fracture healing is out of touch with biological reality.”
Charnley, 1950
IM nails

• “It is possible that time will show that an intramedullary rod …will be enough to enhance alignment…

• the intramedullary rod will not be responsible for immobilisation; it will merely control alignment and prevent slipping of the reduced fracture” Charnley 1950
IM Nails – Advantages

- Less disruption of soft tissue and fracture
- Remote from fracture site
- Biology of fracture undisturbed
- Healing by callus
IM nails – Disadvantages

• Anterior knee pain
• Reaming affects blood supply
• Infection
 The rate of infection for open versus closed reduction was higher but not statistically different
• Non union
• Mal-alignment
 27/32 proximal third tibial fractures had valgus angulation of 5° or more, and 9/32 had apex anterior angulation of 10° after IM nailing.
IM nails – Surgical tips

• Reduce valgus angulation
 – blocking (poller) screw
 – lateral entry point
 Primary valgus deformation can be corrected by inserting nail into lateral third lateral tibial plateau.
 Weninger et al. Injury Oct 2009

• Reduce anterior translation
 – avoid flexion of proximal fragment
 – lateral, posterior and proximal entry
 25/30 fractures nailed using a partial medial parapatellar incision with the leg at 15° knee flexion…eliminated extension force of quadriceps…(to reduce anterior angulation).

• Nail configuration
Plates

• Used for both absolute and relative stability depending on fracture configuration

• Absolute stability required if articular component
 – Buttress plate, lag screw

• Relative stability satisfactory
 – Buttress plate
 – Bridging plate
 – Minimally invasive methods
 – Periarticular plates
Plates - Advantages

• If both metaphyseal and diaphyseal component to the fracture, a contoured plate can be used for bridging

• Minimally invasive methods allow less disruption of the fracture biology and more respect to the soft tissues
 Treatment of complex tibial periarticular fractures using percutaneous techniques

• Control of length, rotation and alignment
 – Anatomical reduction possible if open direct technique
Plates - Disadvantages

• Subcutaneous metalwork
 – disturbs soft tissue envelope and vascular supply – upsetting the fracture biology
 – periosteal stripping
 – wound breakdown and infection is the biggest problem
 – anterolateral approach favoured to maximise soft tissue coverage

• Single plating can result in angulation

• Fixed angle devices can be technically difficult
 Treatment of complex proximal tibial fractures with the LISS system
Plates - Disadvantages

- Less invasive methods require skill in indirect reduction of the fracture, plate contouring and percutaneous screw placement

- Removal of implants is common

External Fixators

Indications:
- Open
- Vascular injury
- Significant soft tissue injury
- Sick patient

Can be:
- Temporary in damage control
- Definitive (frames) alone or in combination
External Fixators

• Advantages
 – technically simpler to apply and construct
 – limited soft tissue damage
 – easy to remove

• Disadvantages
 – knee stiffness if spanning joint
 – pin site or track infections
 – osteomyelitis
 – delayed union, malunion
 – cosmesis and psychological effects
External Fixator vs...

- IM nail
 - 104 IM nails, 70 Ex-Fix, all open fractures
 - Satisfactory alignment: 92% vs 69% (p=<0.01)
 - Infection: 13% vs 21% not sig
 - Time to heal : not sig
 - No of procedures: 1.7 vs 2.7

External fixator vs…

• Plate
 – 59 cases, prospectively randomised
 – All Grade II or III open fractures
 – Severe osteomyelitis in 3% vs 19%
 – Both methods yielded “excellent” results
 – Rate and extent of complications were lower with external fixation

Conclusions

• Essentials
 – Understanding anatomy
 – Understanding reduction – proximal fragment
 – Understanding mal-alignment problems
 – Excellent surgical technique

• Operative management has a better outcome than non operative

• Less invasive techniques favoured in order to protect and preserve the soft tissues
Conclusions

• Treatment choice depends upon
 – fracture configuration
 – achievement of type of stability
 – associated soft tissue concerns

• Consider plate in periarticular, ex-fix or IM nail in open fractures

• Yet to find the ideal treatment option