Cervical Spine Injuries: Assessment and Classification

Mr. Jason Bernard
Queen Mary’s University Hospital
and Kingston Hospital
Assessment

- Clinical
- Radiological
 - static
 - dynamic
- Tomograms
- CT
- MRI
Classification

- Cervicocranium (C1,C2)
- Lower Cervical Spine
Cervicocranium

Dislocation Fracture

Occiput +
 +

Atlas +
 +

Axis +
Occipital Condyle Fracture

- Rare
- Axial compression, lateral bending, shear
- Associated fractures/dislocations
- Cranial nerves at risk
Atlanto-Occipital Dislocation

- Rare, because survival is unusual
- 1% of all C-spine injuries
- Present in up to 8% of fatal RTA
- Twice as common in Children
- Stabilised by Alar and Tectorial ligaments
- Power’s ratio
- Brainstem and cranial nerves at risk
C1 fractures

- ‘Jefferson’ 1920
- Segal 1987 A Current classification
- Up to 13% of all C-Spine fractures
- Peg view - Spence AAOffset \geq 7mm (JBJSA 1970)
- Lateral C-Spine, CT
- Decompressing injury
- Up to 50% have another spine fracture
C1-C2 Dislocations

- **Atlantodental**
 - Rare and likely to have cord injury or death
 - Diagnosis difficult - Reduces in extension
 - Atlanto-Dens Interval $\geq 3\text{mm}, ADI \geq 5\text{mm}
 (Fielding JBJS 1974)
 - Flexion lateral views if neurologically intact and diagnosis in doubt
C1-C2 Dislocations

- **Rotatory Fixation**, Fielding 1977
- Adults-Traumatic
- Children-viral infection/self limiting
- Integrity of Transverse Ligament 45°/65°
- C1 pivots around the Dens or the Facet joint
- C1 may sublux or truly dislocate
- Wink sign on peg view. 15° Rotated CT
 - Doesn’t reduce in rotation
C2 Fracture-Odontoid

- 7-14% of C-Spine Fractures
- D’Alonzo and Anderson 1974
- Type I, II, III
- 25% presented with Neurology
- Type II have a High Rate of NonUnion
 - 36% treated conservatively
- 4 of 49 had a second C-Spine fracture
- Late Cord Injury from minor trauma has been widely reported following NonUnion
C2 Fracture-Hangman’s

- Bilateral Pedicle Fracture
- The commonest fatal C-Spine Injury
 - (30% of such injuries Alker OCNA 1978)
- True Hangman’s is Extension-Distraction
- RTA Hangman’s is Extension-Compression
- Decompressing injury
- 31% have another C-Spine injury
- Disc and Facet integrity are key to stability
- Classification Levine JBJS 67A 1985
C2 Fracture-Lateral Mass

- Rare
- Axial and Lateral Bending Forces
- Articular Fracture
Lower Cervical Spine

- Facet Dislocations
 - (Flexion-Rotation)

- Others by Mechanism
 - (Allen Clin Orthop 1984)
 - Compression (Axial Loading)
 - Extension
 - Flexion
 - Penetrating
Lower Cervical Spine

- Danis 1984 3 Column model
 - Middle Elements are
 - Posterior wall of Vertebral Body
 - Posterior Longitudinal Ligament
 - Posterior Annulus Fibrosus
 - **VITAL FOR STABILITY**

- White and Panjabi Experimental model (Clin Orth 1975)
Lower Cervical Spine

- Facet Dislocations
- A soft tissue injury mainly
- Unilateral or Bilateral (± Facet fracture)
- Order of Component Failure
- Disc inevitably involved to some extent if White and Panjabi criteria are met
- Unilateral 24% nerve root, 32% incomplete cord, 24% complete cord injury
- Bilateral up to 65% complete cord injury
Lower Cervical Spine

- Flexion
- Causes compression fracture of body
- Assess stability using described approach
- Posterior elements usually intact
- Posterior ligament injury may occur.
 Clinical and radiological assessment.
 ‘Perched Facets’ Potential for late instability. Follow up X-Rays
Lower Cervical Spine

- Axial Load
- Burst Vertebral Body + ‘Teardrop’
- Interpedicular distance
- Posterior elements usually intact
- Cord injury common
Lower Cervical Spine

- Extension
- Soft tissue injury
- OA predisposes to Cord injury
- Bruised forehead, Quadriplegia, No fracture
- Anterior longitudinal ligament tear
- Cord compression by extruded disc and posterior osteophyte
Lower Cervical Spine

- Penetrating
- Self explanatory
- Pharyngeal contamination possible