Avascular Necrosis

Andy Langdown
Wessex Regional Teaching Programme

27th Feb 2009
AVN

• Outline
• Predisposing factors
• Aetiology & Pathology
• AVN Hip
 – Diagnosis, imaging & management
• SONK
 – Diagnosis, imaging & management
Avascular necrosis

• Bone death due to lack of blood
• Common sites affected
 – Hip
 – Wrist (scaphoid & lunate)
 – Knee (SONK)
 – Talus
 – May be widespread
 • Caisson’s, Gaucher’s, Sickle cell etc
Aetiology of AVN

- Primary
 - Idiopathic
 - \(\frac{1}{3} \) cases (hip)
 - Young adult M
 - 35-45 yrs
 - Frequently bilateral
 - 20% of femoral heads (THR)
 - ?due to overload

- Secondary
 - Identifiable cause
 - Fracture
 - Steroids
 - DXT
 - Alcohol
 - Sickle cell (worldwide)
 - Caisson’s
 - Gaucher’s
 - Hyperlipidaemia
 - Smoking
 - DDH
 - etc
Pathology

Ficat Stage

0

- Steroids
- Alcohol
- DXT
- Sickle cell
- Caisson's
- Hyperlipidaemia
- Smoking

Vascular Obstruction

Hypoxia

Bone Marrow cell oedema

Recorvery?

Ischaemic Threshold

Anoxia

Bone necrosis

Repair?

Repair Threshold

Microfractures

Repair?

Segmental collapse

Replacement?

Secondary OA

AVN Andy Langdown Feb 2009
Pathology contd

• Various methods of causing vascular obstruction
 – Abnormal Hb & vascular occlusion (Sickle)
 – N gas bubble precipitation (Caisson’s)
 – Post-irradiation vasculitis
 – Fatty infiltration (steroids & alcohol)

• Fate of femoral head related to site & size of infarct
 – Large in WB areas worst prognosis
 – Limited capacity for repair
Diagnosis

• History
 – Predisposing factors
 – Pain of insidious onset
 • Out of proportion to x-ray changes
 • Frequently worse at night
 • Unremitting
 • Non-mechanical
 • Worse with activity

• High index of suspicion
Diagnosis

• Examination
 – Irritable joint
 – Tender joint line
 – ↓ROM
 – Effusion

• Investigation
 – Plain x-rays
 • 2 views needed
 • X-ray changes late
 – MRI Ix of choice
 • Hi sens & spec
 • Allows imaging of other side
 • Can pick up early stages
 – Bone scan less reliable
38 y/o fireman, post dislocation Left hip. X-rays 4 months apart
Features of MRI in AVN

• T1 Peripheral band of low signal outlining central marrow area
 – Represents reactive interface

• T2 high signal at inner border of peripheral band
 – Double-line sign
 – Pathognomonic of AVN
Classification - Hip

- **Ficat 1985**
 - Based on x-ray findings

<table>
<thead>
<tr>
<th>Stage</th>
<th>Clinical features</th>
<th>Radiography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early 0</td>
<td>Preclinical</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>Preradiographic</td>
<td>+</td>
</tr>
<tr>
<td>II</td>
<td>Pre-flattening</td>
<td>+</td>
</tr>
<tr>
<td>Transition</td>
<td></td>
<td>Crescent or flattening</td>
</tr>
<tr>
<td>Late III</td>
<td>Collapse</td>
<td>++</td>
</tr>
<tr>
<td>IV</td>
<td>OA</td>
<td>+++</td>
</tr>
</tbody>
</table>

Showed that prognosis poor after femoral head collapse

AVN Andy Langdown Feb 2009
Classification

• Modifications
 – Ohzono (1999)
 • Looked at site & size of area of infarct
 – Steinberg (1995)
 • MRI based classification
 • 7 stages (0-VI)
 • V & VI relate to extent of acetabular involvement
 • Subgraded I-V in terms of % femoral head involved
 – Size is important!
Management of AVN

• Stage disease
• Early stages (0-II)
 – Risk factors (no evidence)
 – Off-load
 • Modify activity
 • Cushioned shoes
 • Stick/crutches
 • Rest
 – Consider core decompression
Core decompression

• Drill/trephine through cortex into femoral head to ↓ intravascular pressure
 – Gives good pain relief
 – Pre-collapse (0-II) gives better outcome
 – Can allow hip to be saved
 – Similar to fasciotomy for compartment syndrome
 – Can be done with large or small drills
 – Role for vascularised (fibular) graft
Post-collapse treatment

• Intertrochanteric osteotomy
 – Combination of rotation & varus/valgus
 – Aim to remove avascular segment from WB area
 – Various success rates reported
 – Don’t spoil pitch for later THR

• Arthroplasty
 – Cemented vs uncemented
 – ?role for resurfacing or bipolar replacement
AVN of Femoral Head - Summary

- Outcome determined by:
 - Extent
 - Site
 - Aetiology

- Early diagnosis important
 - Outcome poor once collapse occurred
 - Offload joint
 - Core decompression can preserve hip

- Arthroplasty as salvage
AVN of the Knee

- **SONK**
 - Spontaneous osteonecrosis of the knee
 - Subchondral weight bearing area
 - 1st recognised by Ahlback (1968)
 - ? Responsible for 1-2% of knee OA
 - M:F 1:3
 - MFC 98% (then MTP)
 - Aetiology unknown
 - Exclude other causes
Presentation of SONK

- Usually F, age >60
- Spontaneous onset medial knee pain
- Night pain & activity related
- Acute phase lasts approx 8 weeks
- Mobility & weight-bearing preserved
- Can be mistaken for meniscal injury
 - Unnecessary arthroscopy
- Plain films normal initially
Radiology

Varies with stage

Aglieetti classification
(after Ahlbeck & Koshino)

1. Plain films normal
2. Flattening of condyle
3. Lucent area surrounding area of sclerosis
4. Sclerosis around lucency
5. Degenerate change
Radiology – tibial SONK
MRI for SONK

- Ix of choice in early stages
- Changes may predate plain film changes
- Allows sizing & cartilage assessment
- Discrete low signal area on T1 in subchondral bone
- Surrounding oedema on T2
- Large areas progress (>5cm² or >50%)
- Shows additional foci of osteonecrosis

AVN Andy Langdown Feb 2009
SONK - pathology

- Central necrotic area
- Surrounding sclerosis
- Large crater due to collapse
- Progression to OA determined by size of lesion
 - healing vs collapse Lotke 1982
Management of SONK

- Stage disease
- MRI
 - Establish diagnosis
 - Size & location of lesion
- Early stage small lesion (<50% condyle width)
 - Activity modification
 - Crutches
 - ?Core decompression
 - Many do well with no surgery

Forst et al 1998

AVN Andy Langdown Feb 2009
Surgery for SONK

• Grades 3-5
• HTO
 – Reasonable for young active pts
 – Offload area of AVN
 Soucacos 1997, Koshino 1982
• UKA
 – 89% good/excellent 34 knees 5.5 yrs
 – Similar results to UKA for OA 3.8 yrs
 Marmor 1993
 Langdown 2005
• TKR
 – All show slightly worse outcome when compared to TKR for OA
SONK - Summary

• Predominantly MFC, F, >60 yrs, unifocal
• MRI
• Small (<50%) may heal
 – Activity modification
• Large (>50%) may progress
 – Collapse & subsequent medial OA
 – ?Role for core decompression in early stages
 – HTO vs UKA for established OA